

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4734

Probability & Statistics 3

Thursday 12 JANUARY 2006 Afternoon 1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

- In order to judge the support for a new method of collecting household waste, a city council arranged a survey of 400 householders selected at random. The results showed that 186 householders were in favour of the new method.
 - (i) Calculate a 95% confidence interval for the proportion of all householders who are in favour o the new method. [5]

A city councillor said he believed that as many householders were in favour of the new method a were against it.

(ii) Comment on the councillor's belief.

[1

A particular type of engine used in rockets is designed to have a mean lifetime of at least 2000 hours.

A check of four randomly chosen engines yielded the following lifetimes in hours.

1896.4

2131.5

1903.3

1901.6

A significance test of whether engines meet the design is carried out. It may be assumed that lifetime have a normal distribution.

(i) Give a reason why a t-test should be used.

[1

(ii) Carry out the test at the 10% significance level.

[8]

3 For a restaurant with a home-delivery service, the delivery time in minutes can be modelled by a continuous random variable T with probability density function given by

$$f(t) = \begin{cases} \frac{\pi}{90} \sin\left(\frac{\pi t}{60}\right) & 20 \le t \le 60, \\ 0 & \text{otherwise.} \end{cases}$$

(i) Given that
$$20 \le a \le 60$$
, show that $P(T \le a) = \frac{1}{3} \left(1 - 2 \cos \left(\frac{\pi a}{60} \right) \right)$.

[3

There is a delivery charge of £3 but this is reduced to £2 if the delivery time exceeds a minutes.

- (ii) Find the value of a for which the expected value of the delivery charge for a home-delivery i £2.80.
- A multi-storey car park has two entrances and one exit. During a morning period the numbers of car using the two entrances are independent Poisson variables with means 2.3 and 3.2 per minute. The number leaving is an independent Poisson variable with mean 1.8 per minute. For a randomly chose 10-minute period the total number of cars that enter and the number of cars that leave are denoted by the random variables X and Y respectively.
 - (i) Use a suitable approximation to calculate $P(X \ge 40)$.

16

(ii) Calculate E(X - Y) and Var(X - Y).

[3

(iii) State, giving a reason, whether X - Y has a Poisson distribution.

[2

5 The continuous random variable X has cumulative distribution function given by

$$F(x) = \begin{cases} 0 & x < 1, \\ \frac{1}{8}(x-1)^2 & 1 \le x < 3, \\ a(x-2) & 3 \le x < 4, \\ 1 & x \ge 4, \end{cases}$$

where a is a positive constant.

- (i) Find the value of a.
- (ii) Verify that $C_X(8)$, the 8th percentile of X, is 1.8.
- (iii) Find the cumulative distribution function of Y, where $Y = \sqrt{X-1}$.
- (iv) Find $C_y(8)$ and verify that $C_y(8) = \sqrt{C_y(8) 1}$. [3]
- A company with a large fleet of cars compared two types of tyres, A and B. They measured the stopping distances of cars when travelling at a fixed speed on a dry road. They selected 20 cars a random from the fleet and divided them randomly into two groups of 10, one group being fitted with tyres of type A and the other group with tyres of type B. One of the cars fitted with tyres of type A broke down so these tyres were tested on only 9 cars. The stopping distances, x metres, for the two samples are summarised by

$$n_A = 9$$
, $\bar{x}_A = 17.30$, $s_A^2 = 0.7400$, $n_B = 10$, $\bar{x}_B = 14.74$, $s_B^2 = 0.8160$,

where s_A^2 and s_B^2 are unbiased estimates of the two population variances.

It is given that the two populations have the same variance.

(i) Show that an unbiased estimate of this variance is 0.780, correct to 3 decimal places.

The population mean stopping distances for cars with tyres of types A and B are denoted by μ_A metre and μ_B metres respectively.

(ii) Stating any further assumption you need to make, calculate a 98% confidence interval for $\mu_A - \mu_B$

The manufacturers of Type B tyres assert that $\mu_B < \mu_A - 2$.

(iii) Carry out a significance test of this assertion at the 5% significance level.

[Question 7 is printed overleaf.]

4734/Jan06

[2

[6

7 The continuous random variable X has probability density function given by

$$f(x) = \begin{cases} \alpha x^{-\alpha - 1} & x \ge 1, \\ 0 & \text{otherwise,} \end{cases}$$

where α is a constant and $\alpha > 1$. This is called a Pareto distribution.

(i) Show that
$$E(X) = \frac{\alpha}{\alpha - 1}$$
. [3]

Zipf's law states that the distribution of the population size of certain settlements should follow a Pareto distribution. The following table summarises the population distribution of a random sample of 200 settlements.

Population size in thousands (x)	1 ≤ <i>x</i> < 2	$2 \le x < 3$	$3 \le x < 4$	$4 \le x < 5$	5 ≤ <i>x</i> < 6	$x \geqslant 6$
Frequency	146	33	14	5	2	0

(ii) Assuming that x has the above Pareto distribution, and given that the sample mean is 1.920, show that an estimate of α is 2.087, to 3 decimal places. [1]

For $\alpha = 2.087$, the following table gives the expected frequencies, each correct to 1 decimal place.

Population size in thousands (x)	1 ≤ <i>x</i> < 2	$2 \le x < 3$	$3 \le x < 4$	$4 \le x < 5$	5 ≤ <i>x</i> < 6	<i>x</i> ≥ 6
Expected frequency	152.9	26.9	9.1	4.1	2.2	4.8

- (iii) Show how the value 26.9 for the interval $2 \le x < 3$ is obtained.
- (iv) Carry out a test, at the 5% significance level, of whether the data supports Zipf's law. [6]

[4]

STATISTICS 3

1	(i) 400.	$p_S \pm z\sigma_{est}$	M1		Use formula, σ involving p_{s} and
		p _s =186/400(0.465)	A1		
		$\sigma_{\text{est}} = \sqrt{\frac{0.465 \times 0.535}{400}}$	B1		
		z=1.96 (0.416,0.514)	A1 A1	5	
	(ii)	Councillor statement implies <i>p</i> =0.5. CI does contain 0.5 but only juat so councillor probably correct. assertive	B1	1	Any justifiable comment Not too
2	(i)	σ^2 unknown	B1	1	
	(ii)	H ₀ : <i>μ</i> =2000 (or ≥), H ₁ : <i>μ</i> <2000	B1		
		\bar{x} =1958.2, s =115.57	B1B1		or 1958,115.6
	EITHE	ER: Test statistic = $\frac{1958.2 - 2000}{115.57/2}$	M1		
		=-0.7234 Critical value –1.638	A1 B1		art -0.723
		Test statistic not in CR, accept H₀		M1	Or equivalent
	OR:	Accept that specification is being met Critical region:	A1		Conclusion in context
		$\frac{x-2000}{115.57/2} < t$	M1		
		t=-1.638		B1	
			A1		art 1900 or 1910
		As above	M1A1	8	Conclusion in context
3	(i)	Use of $\int_{20}^{a} f(t)dt$	M1		With limits and f(t) substituted
		$\left[-\frac{2}{3}\cos\frac{\pi t}{60}\right]_{20}^{a}$	A1		
		AG	A1	3	Properly obtained
	(ii)	3×(i) + 2×(1-(i))	M1		Idea of expectation
		Equate to 2.80 and attempt to solve	A1	M1	All correct From equation in a, 2 or 3
		a=44.8	A1	4	Accept 45
					SR: 1/3(1-2cos)= 0.8 give max3/4

Use Poisson distribution	M1		Po(5.5) or Po(55) seen
	B1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
σ^2 =55	A1		
(39.5-55)/√55	A1		Standardising, with ,without or wrong cc
-2.09	A 1		wrong co
art 0.982		A 1	6
E(X- Y)=37	B1√		ft μ above
		M1	
=73	A1√	3	ft μ above
	o variance		
OR: X-Y could be negative			
			Any one
So X-Y does not have a Poiss	on distn A1	2	
HER: Use 1/4(3-1) ² =a(3-2)			
R: a(4-2)=1		M1	Continuity of F
a=½	A1	2	
$F(1.8)=\%(0.8)^2$	M1	2222272707	Appropriate use of F
	A 4	_	
C _X (8)=1.8	A1	2 	
$G(y)=P(Y \le y)=P((X-1)^{1/2} \le y)$	M1		
$=P(X \le y^2+1)$		A1	
$=F(y^2+1)$	A1		
$\left(\frac{1}{2}v^4\right)^4$ $(0 \le v \le \sqrt{2})$			
$\frac{1}{8}y (0 \le y \le \sqrt{2}),$			
$G(y) = \begin{cases} 1 & -1 \end{cases}$	A1		
$\left(\frac{1}{2}(y^2-1)\right) \qquad (\sqrt{2} <$	$y \le \sqrt{3}$).		
Ignore others, A1 for both			
ranges of y	B 1	5	
Use $G(v)$ to find $C_v(8)$	M1	*********	
		3	
Correct verification	B 1	3	
	With $\mu=55$ $\sigma^2=55$ $(39.5-55)/\sqrt{55}$ -2.09 art 0.982 $E(X-Y)=37$ $Var(X-Y)=55+18$ $=73$ EITHER: Expectation not equal to OR: X-Y could be negative OR: Difference of two Poissor could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y does not have a Poissor Could have a negative expectation So X-Y	With μ =55	With $\mu = 55$ $\sigma^2 = 55$ A1 (39.5-55)/ $\sqrt{55}$ A1 -2.09 A1 art 0.982 A1 $E(X-Y) = 37 $

6	(i)	$s^2 = (8 \times 0.7400 + 9 \times 0.8160)/17$ = 0.7802 0.780 AG	M1 A1	2	Formula for pooled estimate At least 4DP shown
	(ii)	Assumes braking distances have normal distributions	B1		
		Use $x_A - y_B \pm t\sigma$	M1		Must be t value
		t=2.567			
	•	$\sigma = \sqrt{[0.7802(1/10+1/9) \ (0.40584)}$	A1 B1		Allow 0.780
		(1.518,3.602)	A1	5	art (1.52, 3.60)
	(iii)	$H_{0:}\mu_{A}$ - μ_{B} = 2, $H_{1:}\mu_{A}$ - μ_{B} > 2 Use of CV, 1.740	B1 B1		For both hypotheses
	EITHE	R:Test statistic= $(2.56-2)/\sigma$	M1		Standardising, σ as above
	211112	=1.38	Al		Rounding to 1.38
	OR:	Critical region			8
		$\overline{x}_{4} - \overline{x}_{8} > 2 + 1.74 \times 0.4054$	M1		
		=2.7054	A1		2.70 or 2.71
		Indication that test statistic is not in			
		critical region	M1		Not from different signs test statistic
		and Insufficient evidence to accept claim and H_1	A1	6	critical value. A1 dep on correct H ₀
7	(i)	Use $\int_{0}^{\infty} x \alpha x^{-\alpha-1} dx = (\int_{0}^{\infty} \alpha x^{-\alpha} dx)$	M1		
		$\left[\frac{-\alpha x^{-\alpha+1}}{\alpha-1}\right]_{1}^{\infty}$	Ві		Correct limits not required
		$= \alpha/(1-\alpha) \text{ AG}$	Al	3	Properly obtained
	(ii)	$\alpha/(1-\alpha)=1.92$ giving 2.087 AG	B1	1	
	(iii)	Integral of 2.087x ^{-3.087} from 2 to 3	M1		••••••
		$[-x^{-2.807}]_2^3$	A1		
		×200	A1		
		Obtain AG	A1	4	Evidence required
	(iv)	Combine last 3 cells $X^2 = 6.9^2/152.9 + 6.1^2/26.9$	Bl		
		$+4.9^{2}/9.1+4.1^{2}/11.18$	Mi		Accept one error
			A 1		All correct
		=5.847	A1 ,		art 5.8
		Use CV 5.991	B1 √		ft number of sells used.
		Accept that data supports Zipf's law	Bl Bl for 0	6 499 D1	May 4/6
		SR: From 6 cells: B0M1A1 (for 9.34) then	BI IOF 9	.488, BI	IVIAX 4/0